The Pi-Rate Ratings

April 1, 2022

PiRate Ratings College Basketball–Final Four

Saturday, April 2, 2022
TeamTeamSpread
DukeNorth Carolina3.8
KansasVillanova2.0

Bracketnomics

TeamO-EffD-EffSOS37+ 3ptOReb%-45% vs. 2ptFT Rate 37R + T New RateOld R+T
Duke14558.937.031.646.628.63.612.3
North Carolina183959.336.131.047.530.110.116.7
Kansas71861.835.533.147.032.96.213.8
Villanova91761.435.731.148.030.14.110.9

Duke vs. North Carolina

For so many years, there was a chance that the two two rivals in college basketball would meet in the Final Four.

Personally, in 1982, I held 4 tickets to the Mideast Regional at Vanderbilt University when the NCAA Selection Committee had placed Kentucky and Louisville on a collision course in the second round after Kentucky dismissed Middle Tennessee State in the first round. The two Bluegrass rivals had not met for 25 years, and here they were just two days away from the most colossal game in the tournament since Houston and UCLA played in 1968. Alas, tiny MTSU upset Kentucky, and the value of those four tickets went from new car purchase to nice dinner purchase.

What does that have to do with this game in New Orleans? Absolutely nothing, but it allows me to stall a bit. This game is not easy to figure. Duke has the overall most efficient offense in college basketball, while Carolina is in the top 20 in offensive efficiency but since February, the Tar Heels are in the top five. Carolina’s defense is marginally better than Duke’s, but it isn’t all that much. Carolina has a little better offense at forcing fouls on the defense and a little better R+T Rating, but how much extra do you give Duke for trying to send Coach K out a winner?

In 1975, Kentucky clearly had better overall talent and should have beaten UCLA, but the Bruins played close to their top potential for the retiring Coach Wooden. The last time these two teams played, Carolina spoiled Coach K’s final game at Cameron Indoor Stadium. Additionally, the Tar Heels did not win the regular season or conference tournament in the ACC, while Duke won the regular season title. PiRate Bracketnomics values a conference champion over a non-champion in tossup games, so the edge goes to Duke to make it to the Championship Game on Monday night.

Kansas vs. Villanova

The PiRate Bracketnomics System correctly picked Kansas and Villanova to make the Final Four before the tournament began. We also picked Kansas to cut down the nets in New Orleans, so you know who we are selecting in this game.

Now, let’s look at why. First, Villanova is missing a key player in Justin Moore from an already small playing rotation. Now for the numbers. Kansas has a very slim advantage in offensive efficiency, offensive rebounding rate, defensive 2-point field goal percentage, and R+T Ratings. Strength of schedule is basically dead even, so with the injury to Moore, KU becomes a 4 or 5 point favorite.

March 14, 2022

Bracketnomics 2022

The All-Encompassing Master Bracketnomics Paradigm– Updated for  2022

Note: This Bracketnomics Tutorial makes past ones on our site obsolete.

Hello PiRate Ratings fans.  We here never take for granted just how intelligent the typical reader of this site is.  The contributors to this site are all geriatric lovers of mathematics, basically statistics.  Personally, I (The Captain of the Ship) learned to love math at an early age by calculating the Earned Run Averages of Sandy Koufax, Juan Marichal, Dean Chance, and Gary Peters at a time when they were trying to stay under 2.00.  When Bob Gibson had that miraculous 1968 season, I convinced my classmates to get into baseball just for the stats.  This love for statistics led to me starting the PiRate Ratings in 1969 and becoming a Sabermetric baseball analyst in my 50’s, where I worked for a Major League team.  Additionally, it led to my designing an advanced strategy baseball game called, “Sabertooth Baseball” and an advanced strategy football game called, “PiRate Pro Football.”  If you are into tabletop baseball and want both a basic game and an advanced game, then check out our sister sites, https://sabertooth-baseball.square.site/  and https://pirate-football.square.site/ , where you can  purchase the games online.  We send you a Zip file of player cards, charts, directions, ballparks, and even managerial strategies used by the team.  You print them out and use dice to play the game.  Other games might cost $75-100 to purchase as a boxed game.  Printing the games yourself saves you $$$, and you can keep the charts and rules open on a computer if you don’t want to print them.  A new quick-playing version with easy rules will debut in April.  It’s called “Saberfast Baseball.”

Back to basketball and the real meat of today’s publication.  The PiRate Ratings have been isolating technical data and back-testing our theories as far back as there are statistics for college basketball.  Over the years, we have isolated certain data that serves as a winning NCAA Tournament team “fingerprint.”  We have noticed patterns where teams that made the Final 4 and won the championship shared similar stat profiles.  As basketball analytics came to be, we found new data that made the fingerprint much more accurate.  For several years, we enjoyed incredible success picking brackets, and many of our readers commented that they won their bracket contests.  Included in our selections were crazy things like picking George Mason to sneak into the Sweet 16, possibly make it to the Elite 8, and to actually be a dark horse to make the Final 4, which they did.  It was the next year that a link from a national sports journalist mentioned the PiRate Ratings in his bracket-picking feature, and overnight, this site became 50 times more popular, going from about 50 readers a day to 2,500.  Today, we average about 6,000 readers a day during college basketball season until Bracketnomics season.  The start of the NCAA Tournament for us is like April 15 for an accountant or the Christmas shopping season to a retailer.

In the early 2000’s, we discovered negative data that told us that certain teams were early upset possibilities.  We mentioned more than once that Georgetown and Vanderbilt, two highly-seeded teams, were likely to lose in the opening games to lower-ranked teams, because of our now famous “R+T” rating.  The Hoyas and Commodores both had poor R+T ratings those years, and they both lost just like we predicted.  When the best R+T teams won the national championship three consecutive years, you noticed and began putting the pressure on us to replicate our success. We received over 100 comments on our old site’s comment box saying that you had won your office pool or your other bracket contests.  One patron said she had never come close to winning when she participated in a pool at her office building, and she won the $150 prize for the first time, when she picked Duke, West Virginia, Kansas St., and Michigan St. to make the Final Four.  Kansas State lost to Cinderella Butler in the Elite 8, while the other three made the Final Four.  By the way, Butler was one of two Mid-Major teams we had picked to make the Sweet 16 that year, as we also selected Saint Mary’s to make the Sweet 16.  We did miss on Cornell and Northern Iowa also making the Sweet 16, but very few brackets had them as well, so a large number of our followers won their bracket contests that year.

Alas, like a hot player at the horse track, our system began to weaken a little over the years.  It wasn’t the statistics that led to the swoon; it was the change in the way the game was played.  Basketball analytics began to affect the game the same way that Money Ball affected baseball.  The Four Factors became the Weighted On Base Average of basketball.  And, then the NCAA changed the shot clock from 35 to 30 seconds.  That little five second change greatly altered the way basketball was played.  As a new addition, the changing of the shot clock to 20 seconds after an offensive rebound has changed the metrics a little as well.

The last two years, we spent hour after hour re-tooling our system.  We didn’t throw out the baby with the bathwater, but we altered how the data would be used.  New back-testing showed that our new data might be as accurate of a predictor as the original data.  We were three days away from releasing the tutorial in 2020, when THUD, the season came to an end four days before Selection Sunday.

Last year at the Indiana Extravaganza, we issued most of the new data and did fairly well, as it came down to Baylor and Gonzaga.  Unfortunately, the data showed Gonzaga as the top team, so we missed on the Championship Game, but once again, we received comments from you at our now discontinued second website that many of you won your bracket pool using our methods.  

It is time to reveal to you our updated Bracketnomics criteria for 2022.  After you read this, you have earned a PhD in Bracket-picking (or maybe in wasting time.)  Please enjoy this.  It is still experimental, so please do not use this information for potential financial investment purposes.  A free bracket-picking contest is okay.

Criteria #1: Offensive Efficiency, Defensive Efficiency, and True Shooting Percentage

This should be obvious.  The object of the game is to score points and prevent the other team from scoring points.  The way to score points is to put the ball in the basket, and the way to prevent points from being scored is to force the other team to not put the ball in the basket.  Because there is a way to score one point, two points, and three points, an overall all-encompassing percentage that includes points scored all three ways has been created.  It is called “True Shooting Percentage.”  Its formula is: (100 * Pts) / (2 * (FGA + (.475 * FTA)))

If a team scores 85 points and takes 65 field goal attempts and 25 free throw attempts, then plugging in the formula:  (100 * 85) / (2 * (65 + (.475 * 25))) = 55.3%

When a team has a true shooting percentage offense that is 10% or better than their defensive true shooting percentage, you are looking at a gem.

More importantly, there are offensive and defensive efficiency ratings adjusted by factoring schedule strength.  Look at the top 20 in both categories, making note of any team that appears in both offensive and defensive efficiency.  When a team appears in both top 20’s, they have Final 4 potential.  If a team appears in the top 10 in both, they have to be considered a strong contender to cut the nets down when they play “One Final Moment.”

If a team is in the top 10 in one category but not in the top 50 in the other, this team is good enough to get past the Sweet 16, and usually one Final Four team will have this characteristic, but only twice in the 21st Century (both times Connecticut) has the overall National Champion been outside the top 20 in both offensive and defensive efficiency.  For what it’s worth, the Huskies moved into the top 20 during the tournament. Baylor was #2 in offense efficiency but #22 in defense efficiency, but their schedule strength was very high.  Gonzaga had better numbers last year at 1st in offense and 11th in defense.  Houston was 7th and 9th, while UCLA was that one outlier making the Final Four at 11 & 46.  The team they defeated for the Final Four spot, Michigan, was 9th and 4th.

If you have to give one of the two efficiency stats more weight than the other, it should be the offense and not the defense like one might think.  Basketball is an offensive game.  Baseball is a defensive game.  For our purposes, a team with an offensive efficiency in the top 10 and a defensive efficiency in the top 20 that has an above average schedule strength is pure gold.  If the team has a top 10 offensive efficiency and a top 50 defensive efficiency but has a schedule strength that is 10 points per game better than average, this team must also be considered.  

As you will see in our analysis tomorrow, four teams have both offense and defense efficiency ratings in the top 20.  Four additional teams have acceptable offense and defense efficiency ratings if additional information also shows they are worthy.  One of these eight teams is highly likely to win the National Championship, and three of these eight teams are likely to make the Final Four with one team from outside this group sneaking into the Final Four, possibly a Mid-Major.

Criteria #2: Experienced and Clutch Players

It is rare for a team loaded with freshmen and sophomores that have no key upperclassmen in their playing rotation to make it to the Final Four.  Also, there needs to be a go-to player that can put his team on his shoulders and score the ultra-high leverage points.  What we are looking for here is a roster where at least one of the top 8 players is an experienced upperclassman, preferably with past NCAA Tournament experience.  If a team has considerable experience, like 3 or more upperclassmen starters that also have past NCAA Tournament experience, watch for this team to play intelligently and not make killer mistakes.  

We are also looking for a player that wants the ball with his team down one point and 10 seconds left in the game, or it can be a trio of guys where any one of the three could hit the last-second shot, even if they don’t generate the big headlines.  Look at Kentucky in the John Calipari years.  He frequently had an all underclassmen roster with the only seniors on the roster being walk-ons.  This year’s Kentucky team has experience in the starting lineup and past NCAA Tournament experience as well.  Might the Wildcats be a team to consider advancing deep after missing the tournament last year?  Check back tomorrow.

Criteria #3: Frontcourt Hero

In recent years, hitting from downtown has been the popular way to win games in the regular season.  We used to tell you to throw out the perimeter team as one that could never advance deep into the tournament, but times have changed.  Three-point shooting is now the on-base percentage of basketball.  However, the inside force is still the slugging percentage of basketball.  For a team to win six times after the Ides of March, they must have at least one inside force that contributes a double figure scoring average and a good number average of rebounds.  We personally look for a forward or center that averages 12 or more points per game and 7 or more rebounds per game, or two inside men that combine for 20 points and 12 rebounds per game (or a team with a player named Oscar Tshiebwe.)  If the team has one player that averages 14 points and 5 rebounds per game, and another player that averages 8 points and 7 rebounds per game, this is satisfactory.  That qualifies for enough inside force to win a close game when the opponent has the outside shooting advantage.

Criteria #4: Balance

This is an alternative to the team where one player can carry them to win after win.  If a team does not have a stud NBA Lottery pick on its roster, if they have a balanced team where four or more players average double figure scoring, it can be hard to shut them all down in a game.  One of the four is likely to have a hot hand.  It may not be as immediate, but sometimes the balanced team has the advantage if the one-star team’s star has his one off night of the season in the Sweet 16.  For instance,  #1 North Carolina lost in the 1984 NCAA Tournament when The General, Robert Montgomery Knight devised an excellent defensive game plan that shut Michael Jordan down and limited him to 13 points and four turnovers in his final college game, as Indiana won. 

Criteria #5: A head coach with NCAA Tournament experience, preferably winning Tournament experience

If the coach of a tournament team has taken a past team to the Final Four, he’s in elite company.  Treat this coach like royalty.  If the coach has taken a past team to the Elite 8, he’s almost as royal.  If a coach has taken past teams to multiple Sweet 16’s, then these coaches deserve bonus points.  All the 2021 Final Four head coaches had lengthy NCAA Tournament experience.

Criteria #6: Strength of Schedule

A team from one of the bottom 10 conferences might go 28-3 in the regular season, and possess all of the above criteria above (maybe not criteria #5).  But, this team has probably played 90% of its games against Quadrant 3 and Quadrant 4 opponents, maybe all of its games against the bottom half.

Meanwhile, another team from one of the top three leagues might have stats that make you wonder why this team was invited to the Dance.  Schedule strength is the difference.  Annually, a team with a record like 19-14 from the ACC, Big 12, Big East, Big Ten, or SEC gets an invitation to the tournament and wins a tournament game, while a team that went 29-4 and lost in the championship game of their low-major conference tournament is put in the NIT field, and a 30-4 low-major conference champion loses without really competing in their first round NCAA Tournament game.  

To win the NCAA Championship, a team must have defeated quality opposition and not just teams ranked lower than 250.  In the modern era, every team that has won the national championship had a schedule strength either in the top 40 or at least 8 points per game above average.  There have been multiple #1 seeds with schedule strengths below #40 or 8 points above average that did not make it to the Final 4, and every one that made it to the Final 4 failed to win the National Championship.  Butler in 2010 came within a couple inches of winning the title with a schedule strength outside the top 40.

Teams with weaker strengths of schedule can make it to the Final 4, but not very frequently.  To win four games in the Dance, a team usually has to be battle-tested.  If a mid-major has a schedule strength between 50 and 100, they have to be really strong in other criteria to pick to go to the Final 4.  In 2018, when Gonzaga advanced to the National Championship Game, their strength of schedule was in this range.  Butler’s strength of schedule was also in this range when they twice advanced to the Championship Game.  Loyola of Chicago just barely qualified. The last team not from a power conference (or top Independent in the years where there were 30 independents) to win the National Championship was UNLV in 1990, and before that, it was Texas Western in 1966.

Criteria #7: A Regular Season or Conference Tournament Champion

Rarely does a team win the national championship after not winning either their regular season or conference tournament championship.  It happens, but the conference championship and conference tournament championship teams have already proven they can win games when the money is on the line.

Criteria #8: Three-point Shooting Percentage

In the past, teams that relied on the three-point shot could be counted out after the Sweet 16.  That is no longer the case.  But, shooting three pointers is not the key; making them is the key.  It doesn’t matter how many of them a team takes, the percentage is the key.  Look for teams that hit 3 out of every 8, or to round it to a whole number, better than 37%.  3 of 8 from behind the arc is better than 5 of 9 inside in points per shot.

Criteria #9: Offensive Rebounding Percentage

One would think that a rebound is a rebound, but offensive rebounds lead to more points than defensive rebounds, obviously because an offensive rebound is made within shooting range of a team’s basket, while a defensive rebound is more than 50 feet away from a team’s basket.

The key number here is 37%.  If a team gets offensive rebounds on 37% or more of its missed shots, they are going to be tough to beat in the Big Dance.  Many times, close games are decided by key offensive rebounds in the final two minutes, even the final possession of games.  If a team has made it to the Sweet 16, if they can crash the offensive boards, they are dangerous.

Criteria #10: Defensive 2-Point Field Goal Percentage

After telling you that three-point shooting has become the rage these days, we’ve now mentioned having an inside scoring force, the ability to hit the offensive glass, and now we tell you not to look at three-point shooting percentage defense.  The ability to stop the close shots is much more important in tournament games.  About 60% of all field goal attempts are two-point attempts, and remember that an easy shot inside of five feet from the basket is still more important than an open three-point shot.  If a team has weak inside defense, and the opponent hits 10 baskets inside five feet of the basket, they are likely to consistently have a higher true shooting percentage than the team that averages eight made three-pointers per game.  Over the long haul, the three-point shooting magicians may have higher true shooting percentages, but their chances of having six consecutive higher true shooting percentages are much lower than the team that can get inside of five feet consistently and hit 12 of 18 shots in this high percentage zone.  

Look for a team with a defensive two-point shooting percentage lower than 45%.  Opponents will not be able to consistently score points against these teams.

Criteria #11: Free Throw Rate

We used to pan great free throw shooting teams, because they never won national championships.  In fact, for years, the national champion was always a sub-70% free throw shooting team.  None of the great UCLA teams during their 10-title run in 12 years shot 70% at the foul line.  We showed for years how the dominating power team that may have averaged 18 of 27 at the foul line only lost three points to the top free throw percentage team that went 21 of 27.  These sub-70% free throw shooting teams easily made up that three points and more by controlling the boards against the finesse teams.

Free Throw Rate doesn’t look at free throw percentage.  Drawing fouls on the defense is more important, and we’ve been late coming to this side of belief.  We believed for years that free throws made per 100 possessions was a more important way to measure free throw rate than the standard Free Throw Attempts divided by Field Goal Attempts.  But, the key part of this stat is getting to the foul line more than it is making the foul shots.  Obviously, it is not great to fail to score at the charity stripe, but the essence here is still the same; if a team has to make foul shots to win games, they aren’t going to do so six times in the NCAA Tournament.  But, if they get to the foul line with higher frequency, it means two things much more important than scoring free throws.  First, the opponents are likely to see key players sitting on the bench with foul trouble.  More importantly, a team that gets to the foul line frequently probably is too talented offensively for average and above average defenses to handle.  Why are most fouls committed?  They are committed when a defensive player cannot adequately guard the offensive player.  This is like in baseball when the top power hitters tend to draw the most walks, because pitchers will try to pick at the corners and keep the ball out of the sluggers’ best heat zones.  Those extra fouls are like the pitchers’ throwing four balls out of the strike zone.

The key stat to look for is a team with a FT Rate in excess of 37%.  Defensively, look for a team that has a FT Rate lower than 31%.  Those two stats tell you which offenses are dangerous and which defenses are tournament tough.

Criteria #12: The Old PiRate Data Still Matters

The old mainstay PiRate Ratings data still matters.  Those stats include:

  1. A scoring margin of 10 or more points for Final Four potential, and a scoring margin of 8 or more points for Sweet 16 and Elite 8 teams.  More than 80% of Final 4 teams across time have scoring margins of 10 points or more.  Don’t expect a team with a scoring margin of a few points to win four games in the NCAA Tournament.
  2. Field Goal % margin.  Look for teams that have a regular FG% that is 7.5% better than their Defensive FG%.  If that number is 10% or more, this is a tough team.  A team with a 48% FG% and 38% defensive FG% is a gem.
  3. Winning % away from home.  If a team won 75% of their games not played at home, they are tournament ready.  If a 25-8 team went 17-0 at home and 8-8 away from home, this team is a pretender.  A team has to win six consecutive games away from home to cut the nets, so don’t look at a .500 team away from home to beat six quality opponents.
  4. A lengthy winning streak during the season.  Do you really think a team that never won more than three consecutive games during the season will now win six in a row against better competition?  Most national champions had either a winning streak of 10 or more games or multiple winning streaks of six or more games.

Criteria #13: R+T ©

We saved this one for last.  It is our personal creation.  Way back in the early days of the career of one of our favorite college basketball analysts ever, Clark Kellogg, we heard him mention the term, “Spurtability.”  He explained that teams with spurtability tended to win more NCAA Tournament games than others.  A team that could go on a quick scoring run in a short time frequently won NCAA Tournament games.

Then, we remembered back to our youth, when the NCAA Tournament was the UCLA Invitational.  When UCLA beat Duke in the 1964 National Championship Game, they broke open a close game with a 16-0 run in just two and a half minutes!  This was before the three-point shot existed.  They scored 16 points in about 150 seconds by forcing Duke to turn the ball over against their scary 2-2-1 Zone Press, and they converted over and over with fast break baskets.  The game was over after this.  That wasn’t the only time that year that 30-0 UCLA did that.  Coach John Wooden, in a lecture given to amateur coaches in the 1980’s, said that the 1964 team had at least one run like this in all 30 games that year.

Take two teams evenly matched playing in the Elite 8.  Both are highly ranked and deserving of that ranking.  They are among the top teams in both offensive and defensive efficiency, and both played tough schedules.  With six minutes to go in the game Team A leads Team B by four points, when Team B goes on a 12-2 run in the next two minutes, forcing Team A to call timeout, as they now trail by six points with four minutes to go.  Team B holds on for the win.

Can we predict the probability that one team will enjoy a spurt like this, and the other team will not?  We think most teams can enjoy a spurt like this, but we believe we can estimate which teams have the best chance to go on a decisive game-winning spurt or more little spurts than the opponent.  That’s what the R+T rating calculates.

How does a team go on a big scoring run in a short time?  We will tell you up front that a 16 to 2 run rarely comes about from seven regular possessions by both teams, where the 16-point team scores four two-point baskets, two three-point baskets, and two free throws, while the other team scores just one basket and misses six other times down the floor, where no offensive rebounds or turnovers come into play.

The spurt almost always happens due to a combination of turnovers forced, especially steals, and controlling the boards at both ends.  Getting multiple second and third shots on offense and allowing one or no shot per possession on defense leads to these checkmate spurts.

Looking at a teams’ stats, winning the rebounding and turnover stats, or what some call the “Hustle Stats,” predicts a team’s chances of having a big spurt.  All that’s left is to come up with a formula for Spurtability, and that’s what our R+T rating is.  Our old formula, the one that is easy and quick to calculate, for years was:

(R * 2) + (S * 0.5) + (6 – Opp. S) + T

To explain: R = rebounding margin; S = average steals per game (and Opp. S = how many steals per game given up); and T = Turnover Margin.  Remember that fewer turnovers per game than committed is positive turnover margin, and more turnovers per game than forced is negative turnover margin.

Example:  Let’s Say that State U averages 38.6 rebounds per game and gives up 34.3 rebounds per game.  Their rebound margin is 4.3.  State averages 7.8 steals per game, and opponents steal the ball from State 5.1 times per game.  State averages 12.4 turnovers a game and forces 13.9 turnovers per game for a turnover margin of 1.5.  Now we have all the variables we need to calculate State’s R+T number.

(4.3 * 2) + (7.8 * 0.5) + (6 – 5.1) + 1.5  = 14.9

What this shows us is that State U has an R+T of 14.9 or an average of about 15 points per game in spurtability.

Is this good?  It is rather good but not national champion good.  In most years, a handful of teams in the NCAA Tournament will have R+T ratings above 20.  In several years, the team with the highest R+T rating among those teams from the Power Conferences has won the national championship.

One more thing about R+T ratings. Any time a team has a negative or really low positive R+T rating, throw them out immediately, even if they are a big-name team from a power conference.  Non-spurtability teams that have to win games by consistently winning more possessions in a half-court game are rarely going to make it past the Sweet 16.  One of the reasons the PiRate Ratings gained popularity was with our ability to predict higher-seed first round losers just by their having negative R+T ratings.  Two schools, Georgetown and Vanderbilt, earned three NCAA Tournament bids in an overlapping era between 2008 and 2013, and each time the Hoyas and Commodores had negative R+T ratings.  We picked against them in the first round in all six cases and went 6-0!  Georgetown lost as a #3 seed to Ohio U in 2010.  In 2011, they lost as a #6 seed to #11 VCU, in a game where the Rams R+T was 20+ points better.  In 2013, they were a 3-seed once again and lost to Florida Gulf Coast.

Vanderbilt had negative R+T ratings in 2008, 2010, and 2011.  In 2008 as a 4-seed, they lost to Siena.  In 2010, as a 4-seed, they lost to Murray St.  In 2011 as a 5-seed, they lost to Richmond.

On the other hand, in 2017, North Carolina finished the regular season ranked #6 in the nation with seven losses.  Villanova, Gonzaga, Arizona, Kentucky, and Kansas were rated ahead of the Tar Heels in the polls, and most so-called experts were going with Kentucky, Kansas, and Villanova as the favorites to win the championship.  We begged to differ.  North Carolina had one of the highest R+T ratings since we began calculating the rating.  It was almost 30.  We picked the Tar Heels to win the title, and they did that by going on frequent scoring spurts in those six games.  The difference in the championship game was the R+T rating, as Carolina enjoyed huge advantages in rebounding and turnover rates.  Gonzaga clearly had the better shooting and free throw shooting that night.

Beginning in 2020, we originated a new R+T Rating that used rate stats rather than counting stats, because it is obvious that a team that outrebounds opponents 35 to 27 is better than a team that outrebounds opponents 45 to 36, and a team that misses a lot more shots has a lot more chances to grab offensive rebounds.

The new and improved R+T Rating is a multi-step process.    Here is the formula, and then we will explain it.

((R * 8) + ((S + T) * 4)) / 3.5

This formula now refers to Rate Stats.  The “R” in the formula now stands for Rebounding Rate margin.  This is a combination of both offensive and defensive rebounding rate and it is a deviation from the norm and not just a percentage.  The norm in our formula refers to the current median of the Division 1 teams (usually in the 27 to 29% range and 28.5 in 2022).  If a team has an offensive rebounding rate above this median number, it is above average, and if it is below this number, it is below average.  Thus, the norm for defensive rebounding rate is the opposite of the above number, (usually in the 71 to 73% range and 71.5 in 2022).  We then calculate our R part of the formula by taking each team’s offensive rate minus the norm plus their defensive rate minus the norm and then add the two results and divide by 2.

The rest of this formula uses the same process as above.  Take each team’s steal rate and calculate the difference from the median (9.4% in 2022) for both offense and defense, add the two results and divide by 2. 

Now, we need Turnover rates, both offensive and defensive (16.1% median in 2022).  Obviously, the lower the offensive turnover rate is, the better, and the higher the defensive turnover rate is, the better.  Sum the offensive and defensive differences from the median turnover rate and divide by 2: 

The 3.5 as the divisor is our constant that we hope makes a usable formula telling us the potential number of points a team has in spurtability.  We came to this number by back-testing actual scoring runs and then found the mean square error of actual scoring runs by the teams.

Fret not with the R+T calculations.  We have done all the work for you.  In our big reveal tomorrow, every team’s R+T number will be shown.

Extra Credit:  If you get to a point where flipping a coin is the last step before you choose a winner of a bracket, consider one interesting tidbit that may or may not have any real weight.  Teams with red color uniforms tend to have more fouls called on their players than teams with blue color uniforms.  Overall, teams that wear red tend to get whistled maybe one time more per game than teams that wear blue.  If you look at the national champions from history, many more teams had blue uniforms than had red uniforms.  Green can be counted with the blue, while orange can be counted with the red.  Usually, if the red or orange team is wearing its white uniforms, the calls don’t go against them quite as much.   

We’ve never used this factor in picking brackets or any regular season game for that matter, but it is good for a laugh.

January 22, 2019

Fun Stuff For Stats Buffs-Part 3: Efficiency

Before getting into the meat of this final installment, I must apologize in advance for the brevity in this last segment.  Time constraints have made it impossible to thoroughly peruse individual offensive and defensive efficiency.

That may be a good thing for you the reader, because you can read the dictionary about as quickly as you can go through all the steps involved in calculating individual efficiency.  Suffice it to say that there are several parts to this calculation.  One must have a lengthy formula on a spreadsheet where a player’s and his team’s statistics can be inputted, and the spreadsheet spits out the numbers.

If you really want to know the entire process, then you absolutely must purchase the book by the number one authoritative source on the matter.

The book is: Basketball on Paper: Rules and Tools for Performance Analysis by Dean Oliver.  You might be able to find it in a library, as it is included in the catalog of more than 750 libraries throughout the nation, more than likely at a local college or university library near you.

Just to show you how involved the formulas are, it takes 18 separate calculations from start to finish for each player’s offensive number and almost as many for his defensive number.

The NCAA Selection Committee will use Team Offensive Efficiency and Team Defensive Efficiency in their process of picking the at-large teams and seeding all 68 teams.  This is rather simple and can be explained briefly.

Offensive Efficiency = Points scored per 100 possessions

Defensive Efficiency = Points allowed per 100 possessions.

In the 21st Century, possessions are kept as a statistic, but if you cannot find this number, you can estimate it very accurately by this formula.

Team Possessions = FG Attempts + (.475* FT Attempts) – Offensive Rebounds + Turnovers

In the NBA, substitute .44 for .475 in FT Attempts.

Obviously, round the product from the Free Throw Attempts formula to the nearest whole number.

Let’s look at some examples for a game, a season to date, and some past seasons.

Example #1. Nevada vs. Air Force, January 19, 2019

Nevada defeated Air Force 67-52 last Saturday in Reno.  The Wolfpack totally shut down the Falcons’ offense, while Air Force played capable defense on the perimeter, forcing Nevada players to hurry their three-point shots.

For the game, Nevada had 57 total field goal attempts, 23 free throw attempts, 9 offensive rebounds, and 14 turnovers.

To calculate possessions, plug the numbers into the equation:

57 + (.475 * 23) -9 + 14 = 73

For Air Force, their stat line included 51 total field goal attempts, just 9 free throw attempts, 3 offensive rebounds, and 21 turnovers.

51 + (.475 * 9) -3 + 21 = 73

Possessions must be equal or off by one or two between the teams, because after one team completes a possession, the other team gets the ball.  Two is the most advantageous one team can have over the other in possessions.  This comes about when the team that gets the opening tap also gets the last possession of the first half, as well as the first and last possession of the game.  It happens very rarely, because in order to have the first and last possession of both halves, there must be an odd number of jump ball calls in the first half so that the team that got the opening tap also gets the first possession of the second half..

Let’s get back to the calculation.

Nevada scored 67 points on 73 possessions

67/73 = 0.918 or 91.8 points per 100 possessions

Air Force scored 52 points on 73 possessions

52/73 = .712 or 71.2 points per 100 possessions

 

Example #2: Gonzaga vs. San Francisco, January 12, 2019

In this key West Coast Conference game with first place in the league on the line, Gonzaga went to the Bay and beat the Dons 96-83.

Gonzaga: 69 FGA, 21 FTA, 12 Off Reb, 4 TOV

69 + (.475 * 21) – 12 + 4 = 71 possessions

USF: 69 FGA, 25 FTA, 14 Off Reb, 5 TOV

69 + (.475 * 25) – 14 + 5 = 72 possessions

Gonzaga 96 points on 71 possessions = 1.352 points per possession or 135.2 points per 100 possessions.

San Francisco 83 points on 72 possessions = 1.153 points per possession or 115.3 points per 100 possessions.

 

Example 3: Michigan Wolverines to date

Michigan used to win games by three-point barrages and fast break points and limited defense.  Then, after assistant coach Luke Yaklich came to Ann Arbor to install his multiple defenses, the Maize and Blue became just as tough on the defensive side if not better defensively.

So far this year, the Wolverines have these offensive and defensive stats through 18 games.

Offense: 1,021 FGA, 318 FTA, 165 Off. Rebounds, 175 Turnovers in 18 games

1021 + (.475 * 318) – 165 + 175 = 1,182 total possessions and 65.7 possessions per game.

Michigan has scored 1,306 points in 18 games.

1,306 / 1,182 * 100 = 110.5 points per 100 possessions.

Michigan’s Defense has given up: 1,003 FGA, 210 FTA, 142 off. Rebounds, and  237 turnovers.

1,003 + (.475 * 210) – 142 + 237 = 1,198 total possessions and 66.6 possessions per game.

Michigan has surrendered 1,027 points in 18 games.

1,027 / 1,198 * 100 = 85.7 points per 100 possessions.

A raw point spread between two teams can be estimated by combining their offensive and defensive points 100 possessions and factoring in strengths of schedule and home court advantage.

Let’s look at State vs. Tech in an imaginary matchup.

State has an offensive efficiency of 110 points per 100 possessions and a defensive efficiency of 90 points per 100 possessions against a schedule 3 points weaker than average.  They average 76 possessions per game, and their home court advantage is worth 3 points.

Tech has an offensive efficiency of 102 points per 100 possessions and a defensive efficiency of 99 points per 100 possessions against a schedule 8 points better than average.  They average 66 possessions per game.

For the year in question, the national average for possessions is 70 per game, so State plays at a tempo of about 8.6% above average, while Tech plays at a tempo of about 5.7% below average.  Because it is easier for one team to slow pace down more than it is for another team to speed pace up (unless they press full court for most of the game), it can be estimated that this game will have about 69 possessions.

If State outscores its opponents by 20 points per 100 possessions, in 69 possessions, this equates to 13.8 points.

If Tech outscores its opponents by 3 points per 100 possessions, in 69 possessions, this equates to 2.07 points.

To this point, State looks like an 11.73 point favorite over Tech, but this is not the case.  Schedule strength and home court advantage must be included.

If Tech’s schedule on average has been about 11 points tougher per game than State, you then add those 11 points in Tech’s favor.  Now, the State’s advantage has been reduced to 0.73 points.  Tech’s home court advantage is 3 points, so the expected outcome would be State by 3.73, or 4 points.

This is a crude method once used by the PiRate Ratings, as the Blue Rating.  We no longer use this method, as there are more accurate ways to determine pointspreads, namely using algorithms of the Four Factors with schedule strengths, home court advantage, and road team disadvantage.

Example 4: Villanova 2018 season

The Wildcats won their second national championship in three years last season, finishing with a 36-4 record.  They scored 3,463 points and allowed 2,807 points in 40 games.

Here are their pertinent stats to calculate efficiency.

Field Goal Attempts: 2,440

Opponents: 2,401

Free Throw Attempts: 718

Opponents: 641

Offensive Rebounds: 380

Opponents: 378

Turnovers: 426

Opponents: 512

Possessions: 2,440 + (.475 * 718) – 380 + 426 = 2,827 (70.7 possessions per game)

Opponents: 2,401 + (.475 * 641) – 378 + 512 = 2,839 (71.0 possessions per game)

Offensive Efficiency

3,463/2,827 * 100 = 122.5 points per 100 possessions

Defensive Efficiency

2,807/2839 * 100 = 98.9 points per 100 possessions

 

How does this compare to past national champions?  Because offensive rebounding stats were not officially kept until this century, it can only be estimated for the 20th Century.  No doubt the UCLA teams of 1967 thru 1969 and 1972 and 1973 would be off the charts great, as the Bruins dominated in every aspect of the game during their dynasty years.

There are some very fine teams that won championships in recent years, so let’s look at the national champions during this time.  The number shown is the total scoring margin per 100 possessions.  Of course, schedule strength is not equal for these teams, but on the whole, there is not a lot of difference, as these champions all played schedules between 5 and 10 points above the national average.

When adjusted to schedule strength, here are the 10 best teams in the 21st Century using the PiRate Ratings formula.

2008: Kansas 124.0

2001: Duke 123.6

2018: Villanova 122.9

2010: Duke 122.1

2013: Louisville 121.8

2005: North Carolina 121.7

2012: Kentucky 121.5

2015: Duke 121.3 

2016: Villanova 120.9

2009: North Carolina 120.3

2007: Florida 120.1

2002: Maryland 119.6

2004: Connecticut 117.9

2006: Florida 117.1

2017: North Carolina 117.0

2011: Connecticut 115.8

2003: Syracuse 115.1

2014: Connecticut 111.6

Note that the national champions through these seasons were not necessarily the highest rated team by efficiency.  For instance, Connecticut was not considered a factor at the end of the 2011 regular season.  They finished tied for 9th in the Big East, and thus they had to play in the opening round of the conference tournament.  To win the conference tournament, they would have to do something never done before or since–win five games in five days.  The Huskies became the big story of Championship Week win Coach Jim Calhoun rode his star guard Kemba Walker to the title, winning five games in five days at Madison Square Garden, as Walker performed for his friends and family from the Bronx, averaging 26 points per game by taking it to the hoop and drawing enough fouls to shoot 54 free throws in just five games.

The Huskies were on a roll, and they won six more games in the Big Dance.  They finished 11-0 and still only rose to 15.8 points better than average against an average schedule.  Before this 11-game streak, UConn was just 9-9 in the conference.  However, the Huskies had played a very difficult schedule that included 18 ranked opponents, in which they went 12-6 in those games.  All nine of their losses came to NCAA Tournament teams, so strength of schedule was terribly important in factoring their adjusted efficiency.

 

2019 Top Efficiency

By now, you must want to know which teams are at the top in total efficiency?  It should come as no surprise that the NET Ratings and the Efficiency Ratings are about the same.

Virginia, Duke, Michigan State, Gonzaga, and Tennessee are at the tops in adjusted efficiency, or to put it bluntly, what the NCAA Selection Committee will look at.  Likewise, these are also the top five teams in NET Ratings, so if the Selection Committed picked the bracket today, four of these five would be your number one seeds, and the fifth would be the top number two seed.

This doesn’t mean that one of these five teams will win the national championship, but the odds are that from this group of five, there is about a 50-50 chance that one will win the title.  Of course, this is only a mid-season ranking.  The ranking on March 17.

 

Individual Efficiency

I won’t begin to explain individual offensive and defensive efficiency, as my only recommendation it to read Basketball on Paper, as Oliver is the Bill James (or Tom Tango) of basketball analysis.

Let me just list which players from the power conferences rate at the top.

Can you guess who is the current number one player in efficiency?  I bet if you had one free guess to win a car on a game show, you’d win the car.

The best player in college ball today is the best player in total efficiency.  It comes as no surprise that Duke’s Zion Williamson is number one, and he is far ahead of the field.  Gonzaga’s Brandon Clarke is a distant number two, and Wisconin’s Ethan Happ is almost as far being Clarke in third place as Clarke is behind Williamson.

Before you think that this rating is due to just these three players being great, let me add that their coaches and teammates are also important in this rating.  Coach Mike Krzyzewski has produced a lot of highly efficient players.  Sure, most of them were McDonald’s All-Americans, but there are some of these 5-star players in recent history that are not all that efficient.

Vanderbilt’s Simi Shittu was the Number 7 overall player in this current freshman class, a 5-star McDonald’s All-American.  The Commodores are one of the least efficient teams from a Power Conference, and Shittu’s numbers have headed south once SEC play began, and the opposition quickly learned his liabilities.  Shittu actually owns a negative offensive efficiency rating through 17 games, and an even worse rating in five conference games, as he has negative efficiency in both offense and defense.  It doesn’t help his efficiency when he has a 7.8% three-point accuracy, low free throw percentage, and a high turnover percentage.  I have heard comparisons made to former St. John’s 5-star player Wayne McKoy from the 1970’s, when McKoy went from top player in the freshman class to never playing in the NBA.

 

 

 

 

 

 

 

 

 

 

 

Create a free website or blog at WordPress.com.